
A Pipelined Approach for Iterative Software
Process Model

Ms.Prasanthi E R, Ms.Aparna Rathi, Ms.Vardhani J P, Mr.Vivek Krishna

Electronics and Radar Development Establishment

C V Raman Nagar, Bangalore-560093, INDIA

Tel No. 080-25025769 Fax No. 080-25240821

prasanthi_e_r@yahoo.com

Abstract:

In complex scientific projects where the whole
system cannot be completely perceived in the beginning, an
iterative development approach that follows the functionality to
be delivered in parts has become a necessity and an effective
way for refinement and risk management. Iterative
development in conjunction with software reuse is one of the
most promising and practical ways of tackling risks involved in
a complex system. In the iterative model the feedback from the
stage wise testing at the earliest can be used to improve the
final deliverable. In this paper we share our experience with
iterative software development in which multiple iterations are
carried out in a parallel fashion. Pipelining concepts are
employed to have multiple iterations executing concurrently
leading to a reduction in delivery time and early diagnosis of
risks. We illustrate the use of this process model through an
example of an airborne radar application software project.

This paper is organized as follows. It starts with
introduction dealing with a comparison between waterfall
model and iterative model. In the next section we will discuss
about the foundations of iterative model, designers journey,
validation in iterative development and application of model
for airborne applications. The paper also discusses the
conclusions at the end.

Keywords: Software process, life cycle, process model,
iterative development, pipelining.

I INTRODUCTION

Software projects generally make use of a
process to enable execution of the various engineering
tasks to achieve the goal of delivering a software product
that satisfies the customer requirements. The processes
so utilized conform to a process model which represents
a networked sequence of activities and objects along
with strategies for accomplishing the software evolution.
A process model generally comments about the various
stages to be executed and any other constraints and
condition on the execution of stages. The most common
model is waterfall model in which different phases of
requirement specification, design, coding and testing are
carried out in sequence. The waterfall model was first

proposed by Royce who suggested that there must be
multiple distinct stages in a project execution. Even if
the waterfall model proposes a sequential execution of
stages, Royce had also pointed out the necessity of
feedback from testing to design and from design to early
stages of requirements.

Though waterfall model became the most
influential process model, it has some predominant
limitations(Boehm). The biggest limitation of waterfall
model was that it assumes the requirements are stable
and known at the beginning of the project. The
phenomenon of requirements being not changed
unfortunately does not exist in reality in research and
development projects. Instead the requirements do
change and evolve during project execution. For
accommodating the changes in requirement while
executing the project using waterfall model,
organizations usually define a change management
process. Another major limitation is that it follows the
approach of software delivery in one shot at the end.
And till the end, no working system is delivered. This in
fact involves heavy risks as the users do not have any
idea of the system till the very end. To overcome these
limitations an iterative development model can be
utilized. In an iterative development model software is
built and delivered to the customer in multiple iterations.
Every iteration delivers a working software system
which is an increment from the previous delivery.
Iterative enhancement(Basili and Turner) and
spiral(Boehm)are two very well known process models
that supports iterative development. Agile method of
programming (Cockburn)and eXtreme
Programming(XP)(Beck)also promote iterative
development. In XP methodology the key practice is to
deliver software in small iterations.

With iterative development the shorter release
life cycle reduces much of the risks associated with one
shot delivery. Also requirements need not be entirely

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013

specified at the start of the project, as it is the fact in a
complex and newly conceived project. The constraints
and requirements can evolve over time and can be
incorporated as feed back in the system in coming
iterations. Incorporating the changes is easy as any new
requirements or change requests can be passed on to a
next iteration. That is how iterative development is able
to handle shortcomings of the waterfall model and is
well suited for complex scientific projects despite having
some of its own drawback.(for example, it is practically
hard to preserve the simplicity and integrity of the
architecture and the design)

II FOUNDATIONS OF ITERATIVE DEVELOPMENT

There are basically two successful, accepted
and yet apparently opposite practices in software
engineering[3]. Do it right the first time - This practice is
originated with extreme optimism and self confidence
of non failure. In software engineering this practice is
clearly reflected in waterfall model. The Fail fast - This
practice is originated in pessimistic belief that problems
are part of reality. As far as software engineering is
concerned, this practice is the base of spiral and other
iterative or incremental development models.

Iterative development and water fall approach
are generally classified as they have nothing in common.
But in reality most of the projects are a mixture of these
two opposite concepts. Most frequent complaint or
criticism about iterative development techniques may be
that it was a poor design in the previous iteration. The
whole purpose of the iterative development is to find the
risks hidden in the design of the previous iterations,
correct it sooner and progress further. Its purpose is to
discover pitfalls that otherwise could not have been
foreseen.

Sequential development relies on designing the
whole system first and then building all parts which at
the end must perfectly fit into the perceived system. For
this to happen the detailed foreknowledge of the system,
various components, their interaction, user perception
etc is mandatory, whereas intellectual difficulties are
inherent in a complex and evolving system. Thus
iterative development becomes the method of choice for
building novel high complexity systems. But the size of
iteration, the effort and money involved in each iteration,
validating the output with requirements and finding
nonconformance and finally zero in on to the bugs and
corrective actions require lot of insight and expertise.
However drawing a line between iterations is always a
dilemma. In this context Tom Glib offers a rare piece of
guidance - ”the juiciest one next”. Understanding the

heuristics helps provide vision and focus which is
essential when building complex systems.

III A DESIGNER’S JOURNEY

The essence of a software architecture is
contained in the relationships between the different
elements present in the system. Hence it is utmost
important to build the architectural frame as a first step
with only as much functionality as required to verify
that the frame is appropriate for the system. Once the
elements are integrated it boosts confidence and once
understood it provides more insight in to how and where
the subsequent pieces has to be tailored. Researchers
have found that one of the most prominent risk in
building complex system is excessive unrealistic or
unstable requirements. The key challenge is to identify
the areas of volatile requirements at the earliest and
should provide room for resilient to even dramatic
changes in requirement or functions. An airborne radar
system for example deals with the understanding of the
natural environment(the earth, space, water or
meteorological conditions), the aeronautical
environment(with navigational aids), the radar system
and communication with other external systems.

Building the frame first means that the early
focus must be on establishing infrastructure that supports
necessary interaction between various application
objects. The frame should be flexible when needed and
stiff wherever necessary-to accommodate corrections
before proceeding further. This idea is well explained by
Drasko Sotirovski in his paper titled “Heuristics for
iterative software development” [1].

The most common iterative development
approach comprises of a sequence of iterations with each
of the iterations delivering parts of the requirement
functionalities. Even though the functionalities are
delivered in parts, the total development time is not
reduced. If we wish to reduce the total development
time, a natural approach is to use parallelism between
the different iterations. That is, a next iteration begins
before the output produced by the current iteration is
released and hence development of a new release
happens in parallel with the development of the current
release. This model ensures that deliveries are made with
a much greater frequency thereby substantially reducing
the cycle time for each delivery.

As pipelining is to be employed to achieve
parallelism the stages of iteration must be carefully
chosen. The stage should be such that its output is the
only thing needed for the team performing the task of
the next stage with minimal communication. As an

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 2 10-14 December 2013

example, consider an iteration stage consisting of
requirement specification, coding and testing. The
requirement stage is executed by its team of analysts and
end with a prioritized list of requirements to be built in
this iteration. The requirement document is the main
input for the implementation team. This team
implements these requirements and hands over to the
testing team after performing developer level testing.
The tested code is then sent for deployment or
integration with other subsystems. The figure1 shows
the comparison of waterfall model with iterative and the
incorporation of parallel stages in iterative model.

Figure1(courtesy paper on process model by Pankaj Jalote and
associates in the journal of Systems and software)[2].

V VALIDATION IN ITERATIVE DEVELOPMENT

The essence and motivation of the iterative
development is to reduce risk by validating the proposed
design as early as possible. Anything less than
integration goes against the iterative development
principles because the intention is to discover problems
that otherwise could not be foreseen. For these reasons it

is important to create mission critical pieces as well as
more frequently visited functionalities at the earlier
stages of iteration itself. Early iterations should focus not
only on implementing these requirements but on
implementing a frame work resilient to requirement
changes. This confirms the property of early
functionality which has more time to mature and gain the
quality that comes with age.

IV SAMPLE APPLICATION

The iterative model with much of parallelism between
stages of iteration has been used for the under mentioned

application ie, in airborne radar software development
which consists of multiple subsystems. As and when the
requirements are captured at high level, the subsystem
requirements are derived. The first step is to identify the
requirements which are independent of each other and
are major as far as the customer requirements is
concerned. In other words, these requirements should be
less likely to be changed and can be tested after its
completion so that its test results play a major role in the

Iterative with pipelining:

Deliverable of the iteration

Deliverable of the iteration

Requirements Design Coding Test

Requirements Design Coding Test

Requirements Design Coding Test
Final deliverable

 Final deliverable

Waterfall Model:

Requirements design coding Test

Final deliverable

Deliverable of the iteration

Iterative: Deliverable of the iteration

Requirements Design Coding Test

Requirements Design Coding Test

Requirements Design Coding Test

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 3 10-14 December 2013

system characteristics. For this iteration the derived
subsystem requirements are delivered to the
implementation team of each subsystem. As on the
requirements are handed over the requirement capturing
team concentrates on next set of derived requirements,
interface requirements, implicit requirements and so on.
Mean while in parallel approach, the implementation
team completes coding and delivers the piece of code to
the testing team. The testing team performs the test cases
and verifies against the requirements.

This way multiple stages of iteration can
progress independently and in parallel. At this stage the
support software for testing also has to be considered as
a major requirement. The testing can be performed either
by the in-house developed simulator or Commercial Off
The Shelf(COTS) simulators according to the suitability
of the application. The choice of the simulator should be
such that it should be able to generate the required
environment for the major functionality which is under
test. For example in an airborne radar development
application we have developed an environment simulator
in parallel with the application development by a
different team so that by the time the major
functionality is ready for testing the simulator was made
available for the test. Once the code to be tested is
handed over the next stages of requirements in pipeline
are considered and implementation begins for that.

As and when the test results and the review
points are available, the changes are made part of the
next iteration. As per the severity and dependency of
these results, it is also possible to make these part of the
second iteration. But since the first iteration is chosen in
such a way that it is more independent, pipelining the
required changes as part of a third iteration would also
serve the purpose with no impact on the planned way of
stages of iteration.

As and when each subsystem is ready with
primary set of requirements, the subsystems can be
integrated and tested. Even users are involved at this
stage which helps to find out the ground realities in a
complex project with fresh hand experience. This first
iteration can be named as a first release which will bring
out the risks and practical implications and what is
different from the assumptions in the simulation. After
this stage, it also may be required to change the
simulator software which gives results as that of a
practical situation. The radar environment simulator
which we used has been undergone such changes after
the first integration and trials.

In total, the parallel approach we adopted in
iterative development has helped in finding the risks and

bugs as early as possible and take corrective actions. The
project requires tight configuration management as many
teams are working concurrently. The reconciliation
procedures need to be solid and applied regularly as it is
likely that changes will be made by the team for a stage
to the output produced by the previous team. And when
this is done, as the previous team is already working on
the next iteration there will be a need for reconciliation.
This is quite likely to happen between the build and
deployment stages as the bugs found during deployment
are typically fixed during next iteration.

CONCLUSION

It is a necessity to manage risks in an effective
way. Though the features to be built should be decided
on priority, the learning curve that is needed in a
complex system is to be accounted for. The light weight
features chosen in first iteration will enable the team to
become familiar with domain and the existing system
and hardware. Requirement changes can be handled as
per the model-unless urgent they can be pushed to the
next available iteration. For bug fixes, unless the bug is
critical(in which case it is corrected immediately), the
bug report can be logged and scheduled as part of the
requirements for the next iteration. The determination of
functionalities in first iteration plays an important role
and then plan the effort and schedule for delivering the
functionality in that iteration. Due to pipelining the
turnaround time for each release is reduced substantially
without increasing the effort requirement. As discussed
above to keep the project manageable, the number of
stages in iteration should be a few.

REFERENCES

[1]Heuristics For Iterative Software Development, Satirovski (D),
IEEE Software 18,3;2001, May/Jun; 66-73.

[2]The Time Boxing Process Model For Software Development,
Pankaj Jalote, Department of Computer science & Engg, IIT Kanpur,
India.

[3]Software Engineering, A Practitioner’s Approach, Roger S
Pressman, 7thEd, 2010.

BIO DATA OF AUTHORS

Prasanthi E R was born in 1980 at Thrissur, Kerala.
She graduated in Computer Science and Engineering
from Govt. Engineering College, Thrissur in 2001.
She is working in the area of Radar Data Processing in
Electronics and Radar Development Establishment
since April 2004.

Aparna Rathi, received the M.Tech degree in
Electronics Design Technology from Center of
Electronics Design Technology of India,
Aurangabad, in 1997. She is a scientist in

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 4 10-14 December 2013

Electronics and Radar Development Establishment,
Bangalore since 1999. She has worked for
development of target tracking and radar data
simulation software for different radar applications.

J.P.Vardhani studied MSc in Andhra University,
Vishakhapatnam and M.S. in Software Engineering
at BITS, Pilani. Joined DRDO in 1990. Currently
working with LRDE (DRDO). Area of specialization
is Radar Controller and Display. Areas of interest
include Real Time Systems, Software Engineering
and Artificial Intelligence.

Vivek Krishna was born in 1979 at Ballia, Uttar
Pradesh. He completed M. Tech in Electronics
Engineering in 2004 J.K Institute of Technology,
Allahabad. He worked as a Lecturer at BBS
Engineering College, Allahabad and ISDC,
Allahabad. He joined Electronics and Radar
Development Establishment, Bangalore in 2008 as a
scientist and has been working on radar data
processing applications.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 5 10-14 December 2013

	Index
	Session 22
	Author Index

